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ABSTRACT

A general three-field variational principle is obtained for the motion of an acoustic fluid enclosed in

a rigid or flexible container by the method of canonical decomposition applied to a modified form
of the wave equation in the displacement potential. The general principle is specialized to a mixed

two-field principle that contains the fluid displacement potential and pressure as independent fields.

Thls principle contains a free parameter a. Semldlscrete finite-element equations of motion based on

this principle are displayed and applied to the transient response and free-vibrations of the coupled

fluld-structure problem. It is shown that a particular setting of a yields a rich set of formulations

that can be customized to fit physical and computational requirements. TiLe variational principle is
then extended to handle slosh motions in a uniform gravity field, and used to derived semidlscrete

equations of motion that account for such effects.

1. INTRODUCTION

An elastic container (the structure) is totally or partly filled with a compressible liquid or gas (the

fluid). The fluid structure system is initially in static equilibrium in a steady body force field such

as gravity or centrifugal forces. We consider small departures from equilibrium that result in forced

or free vibratory motions. To analyze these motions the fluid is treated _ a linear acoustic fluid,

i.e., compressible but irrotational and inviscid. The purpose of tile present work is

1. To derive variational equations of motion based on a mixed variational principle for the fluid

subsystem.

2. To obtain semldlscrete equations of motion following spatial discretization of the coupled prob-

lem by the finite element method.

The derivation of the mixed variational principle for the fluid is based on the method of canoni-

cal equations advocated by Oden and Reddy 113] for mechanical applications. The most general

dynamical principle derived in this paper contains three primary variables: pressure-momentum

vector, dilatation-velocity vector, and displacement potential.



The general principle is specialized to a two-field functional of Reissner type that has press_Ire

and displacement potential as primary variables, as well as a free coemcient a that parametrizcs

the application of the divergence theorem. The coupled variational equations are then discretized

by the finite element method, and semidiscrete equations for a rigid container established. Linkage

with the structure is then made to establish coupled semidlscrete equations of motion for a f]exlble

container. By appropriate selection of the coefficient a a continuum of finite element formulations

results. One particular setting ]yields a rich set of symmetric and unsymmetric formulations for

the transient and free-vlbrations elastoacoustic problems. From this set selections can be made to

satisfy various physical and computational criteria. The implications o[ these selections as regards

el_clency and numerical stability are discussed.

The variational formulation is then extented to cover slosh motions in a uniform gravity field.

It is shown that the surface slosh equations may be incorporated as Galerkin terms in several

forms, and that one of these forms merges naturally wRh the mixed variational principle to form

an augmented functional. Semidlscretization of this functional produces fi,ite element equatlons of

motions that may be used for a rigid or flexible container.

2. GOVERNING EQUATIONS

The three-dimensional volume domain occupied by the fluid is denoted by V. This volume is

assumed to be simply connected. The fluid boundary S consists generally of two portions

,.,¢'" S,|USp. (1)

S,l is the interface with the container at which the normal displacement d,, is prescribed (or found as

part of the coupled fluld-structure problem) whereas S_, is the "free surface" at which the pressure

p is prescribed (or found as part of the "fluid slosh" problem). If thc fl||id is fully enclosed by the

container, as is necessarily the case for a gas, then S v is missing and S =- S,l. The domaln is referred

to a Cartesian coordinate system (xl, x2, x3) grouped in vector x.

The fluid is under a body force field b which is assumed to be the gradiez_t of a time indcpendettt

potential /_(x), i.e. b = _7_. All displacements are taken to be inl]nitesimal and thlls the f/tfid

density p may be taken as in_riant.

We consider three states or configurations: original, from which displacements, pressures and

forces are measured, current, where the fluid is in dynamic equilibrium at time t, and rc/crettce, which

is obtained in the static equilibrium limit of slow motions. Transient motions are the difi'ercnce

between current and referen_:e states. It should be noted that in many situations the original

configuration is not physically attainable. Table 1 summarizes the notatiozl used in relation to these

states.

_.I Field Equations

The governing equations of the acoustic fluid are the momcntum, state aml conthmity equations.

They are stated below for the current configuration, and specia[izcd to the reference configuration
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Table 1 Notation for Fluid States

Quantities Domain Original Reference Current Transient

d o d = d t - d o

do d= d'-d °
d_° d,, = d_ - d_°
¢o ¢ = Ct _ ¢o

pO p = p t _ pO

b= V#

Displacements V 0 d
-f

Velocities V 0 d

Boundary displacements" ,5' 0 d_

Displacement potential V 0 _bt

Pressures (+ if compressive) V 0 pt

Body forces V 0 b = V/_

Density V p p p

Positive along outward normal

later. The momentum (balance) equation expresses Newton's second law for a fluid particle:

pc]t= -Up' + b = -Vp t + V/L (2}

The continuity equation may be combined with the linearized equation of state to produce the

constitutive equation that expresses the small compressibility of a liquid:

p t = -KVdt = _pc2Vdt, (3)

where K is the bulk modulus and c = _ the fluid sound speed. If the fluid is incompressible,

K,e --+ co. This relation is also applicable to nonlinear elastic fluids such as gases undergoing

small excursions from the reference state, if the constitutive equation is l]nearized there so that

K "" po(dp/dp)o.

The boundary conditions are

d.' = d'.' on S,,, P' = 5' ,,n S,,, (.t)

where d_ is either prescribed or comes from the solution of an auxiliary problem as in fluid-structure

interaction, and/3 may be either prescribed or a function of d,, and b, as in the surface-wave ("slosh")

problem.

_._ Integral Abbreviations

In the sequel the following abbreviations for the volume and surface integrals are used:

(f)v de' IV fdV, [ff]S dcffS _._.
g dS, [gls, ,l_f= = = gdS, etc. {5)
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That is,domain-subscriptedp_trentheses(squarebrackets}are used to abbrevhttevolume (surface)

integrals.Abbreviationsforfunction innerproductsare illustratedby

(I g)e = IgdV, (/,#)vx, d'd IodVdt, [/,9Is,×, ,,,., IaaSat, etc.
o o .t

(6)

8. THE DISPLACEMENT POTENTIAL

8.I The ReferenceState

Taking the curlof both sidesof (2)yields

-t

curld = O. (7)

The general integral of this equation for a simply connected domain is

d t = V¢t + a + bt, (8)

where Ct = Ct(x,t ) is the displacement potential, a -- a(x) and b = b(x) are time-independent

vector functions, and t denotes the time. If accelerationless motions (for example, rigid body

motions) are precluded by the boundary conditions, a and b wmlsh. Replacing cl t = V_ t into the

momentum equation (2)we get

vp'=-pv_' + v_, (o)

which spatially integrated gives

p' = -p_,' + _ + c(t}, (10)

where the scalar C(t) is not spatially dependent. Next integrate the constitutive equation (3) over

V and apply the divergence theorem to XTd:

(P')v + (pc=Vd'}v = (pt)v + [pc=d_ls =0. (11}

Inserting pt from (10) into the above equation furnishes a condition on C(I), which gives

_ _ P c2 ,- t 1c(t) = _[e'.ls + P-((b')v - l(_)_ = -_t_,,J._ + 0_'- _, (_2)
IN 1) I) IJ

where v = (1)v is the fluid volume and 7 = (f)v/V denotes the volume average of a functio,, f

defined over V. Substituting C(t) into (10) we get

PC21dtl_.
V' = -P(_" - _) + (/3 - "3) - "-j, ,,,.. (13)

In the static limit of very slow motions, the inertia terms may be neglected and we recover the

reference solution
P c2 ,-o_

p0 = (3- 3) - --_-ta,,ls. (1,f)

For an incompressible fluid {d, ls = 0 but e _ co; thus it would be incorrect to conclude that

p0 = 3 - 3. A counterexample to this effect is provided in [14].



8.E Transient Motions

Subtracting the constitutive relations at the current and 1:eference states we get

• . p = -pc2V_¢ = pc2s, (15)

where s -- -V2_b is called, following Lamb [I0], the condensation. Subtracting (I,I) from (I 3) yields

p = -p(_ - _) - e_[d_ls. (16}

On equating (15) and (16) we get modified forms of the wave equation that account for mean

boundary surface motions:

The second form follows from -v'_ = [d,,]s, which is a consequence of the divergence theorem. For

an incompressible fluid, c --_ co and [d_,]s = O, and from the first of (17) we recover the Laplace

equation V:¢ = 0.

8.5 Adjusting the Displacement Potential

If the transient displacement potential is modified by a function of time:

¢ = ¢ + Pit), (18)

where ¢ is the potential of (8)-(17), we may chose Pit) so that c2¢ = V_'_/, = -_ for any t. Then

we obtain the classical wave equation

c2V_¢ = _, or

In the sequel it is assumed that this adjustment has been made.

reduces to

= 0. 09)

If so, C(t) vanishes aad (16)

p = -p_. (2o)

4. MIXED VARIATIONAL PRINCIPLES

4.1 Canonical Decomposition

In this section we derive multifield variational principles for the fluid domain h,llowing the canonical

decomposition method advocated by Oden and Reddy [13]. This method is applicable to sclf-adjoint

boundary value problems (BVP) of the form

Au = f in D (21)



whereu is the unknown function, f the data, A a symmetric linear operator, and D tile domain of

existence of the solution. For time-dependent problems D is the tensor product or tile timc domain

(typically 0 to t) and the volume V. To apply this method, the operator A is factored as

Au = W*EWu = f, (22)

where T and E are linear operators in V and W* is the adjoint of T. This is called a canonical

decomposition. This decomposition may be represented as the operator composition sequence

Wu = e, Ee = a, W* a = f, (23)

where e and a denote intermediate field variables in D. The three equations (23) are called the kine-

matic, constitutive and balance equations, respectively, in mechanical applications. The canonical

representation of boundary conditions on the surface S = S,, u S,, is

Bs.s=g on S., B_oas=h on S.. (21)

where Bs and B_ are surfa,:e operators, g and h denote boundary data, and us = "_sv and

as --- rsa are extensions of u and a to the boundary S. The extension operators "Ts and 6._ often
involve normal derivatives.

_.ft The Wave Equation

The classical wave equation (19) is not a good basis for the canonical dccomposition (22). Its

principal drawback is that the pressure field does not appear naturally as an intermediate variable

in (23). A more convenient focm for our purposes is obtained by taking the Laplacian of both sides

of (19), and multiplying through by the density p:

pv:(5 -  2v2v) = 0, whence A=pV 2 -c_W _" , /=0. (25}

A suitable canonical decomposition is A = W*EW, where

[],0 1W= , E=p 0 c2 ' W*= -iV V-" =-W T, (2_;)

in which i = _fL'T. Boldface symbols are used for W and E because these are 4 x I and 4 x 4

matrices, respectively. The operator product sequence (23) becomes

e=W¢= _V2¢ j = , a=:Ee= _pc_V2¢j = , W'a=pV2¢-pc_V4¢,=O.

(2v)
The intermediate fields e and a are 4 x 1 column vectors. These vectors are partitioncd into their

temporal and spatial derivative subvectors for convenience in subsequent manipulations. Note that
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the transientpressurep appears naturallyas the spatialcomponent of a. The temporal components

of e and # are the complex velocityiv and complcx specificmomentum ira,respectively.

The boundary portions 5_,and So of (24)are relabeled5a and S_,,respectively,to match thc

notation (1).Boundary and i.nitialconditionsmay be statedas

B_b(x,t) = g(x,t) on S,z, B'a(x,t) = h(x,t) on Sl,,
(28)

d(x,to)= do(x}or mCx,to)= moCx), dCx,tt)=dr(x) or m(x,t,}=m,Cx}.

Here B and B" are time-independent 4 x 1 and 1 x 4 vectors, respectively, related to tile canonical

Bs and B_ operators of (24) by B = BsTs and B" = B;rs, where "Ts {a scalar) and rs (a4 x 4
matrix) are boundary extension operators for ¢ and a, respectively. Comparison with (4) and the

use of Green's function reveals that

0
Br=-B;=[0 0 0 I], gr=[0 0 0 J,,},_s=_, r.,.=1,h=-_. (29)

,l.3 Three Field Prineiple

The most general variational principle for the canonical decomposition {26) allows the three fields:

¢, e, and a, to be varied independently. The principle may be stated as d_LIe , e, a) = 0, where the

functional L is [13]

L(u,e,a) = Lv +Ls = l(Ee, e)vxt+(a,W¢-v)v×t-(f,¢)v×t + (as,13¢-g)s_xt-(h,¢._')s,×,,

(30)

where Lv and Ls collectvolume and surfacetcrms,respectively.On inserting(27-29)into(3C})wc

get

Lv= ]CZe,e)v_,+Ca,W¢-e)v_,= [_pC-vrv+c_s_)-mrCV¢-v)-pCV2¢+s}]dVdt,

Ls = (as, Be - g)s, x, - (h, Cs }st x, = P(_n - d,, }d_q + l,_n dS dr.

(31)

The term (f,¢)w x_ vanishesand does not contributeto Lv.

_._ Two Field Principles

A two field principle of Reissner type can be derived from the functional L by enforcing the inverse

constitutive equations e = E-ta a priori. The resulting principle, which allows ¢ and a to bc

varied simultaneously, is 6R(¢, a) = 0, where

R(¢, _) = R_ +Rs = - ½(E-to, _}v×,+ (-, W¢). _, - (/',¢),. ×,+ (_s, n ¢,- g)s,×, - (h,¢.,.)._,_,.
(._)



where Rs = Ls and

fttt fe _p P_ naTV(b _ pV:tb) dV dt.R"(¢'a)=-½CE-_"'a)v'_t+(_"W¢)"×t= ( mr" 2,,c_
o

(33)

The specific momentum disappears as an independent field if we enforce m = pV(b a priori,

whereupon the functional R becomes a function of ¢ and p only and the volume term contracts to

/tt fw P= -pV2C,)dV dr.R,,(¢,p)= (- ½p(V )Tv -
o

(34)

To check R = Rv (¢, p) + Rs we form its first variation*

Sxt (35)

Setting 5R = 0 provides the field equations, boundary and initial conditions.

,1.5 Parametrization

A one parameter family of variational principles can be obtained by transforming all or part of

the last term in (34), tn'z. pV2_/,, by the divergence theorem (Green's first, formula for the Laphce

operator)

pV2¢ dV + (v¢)rvp dV = P_n dS = P'_n dS -_ P-_n dS. (36)
,4 r

Let 0 _ a < 1 be the portion of that term to be transformed. Insert pV:¢ = apV2_l,+ (1 - a)l,V:_l,

in (35) and apply (36) to apV2d2 to get

L ,8¢ ]l__n dS_ct _.% 8¢P a-_ndS dr.

(37)

* The variation of the kinetic energy integral term may be expressed in two different ways,

" t!

depending on whether integration by parts is performed first in time or space, respectively. The first
form, which provides physically significant initial conditions, is used in constructing (35).



Finally,replace the Laplacian V2%bleft over in (37) by c-2,_ to arrive at tile paramctrized two-fiehl

functionalt

-.. /

J_C¢,p) -- R_v + Rs = (- _pCV¢)_v_- _--+ .(v¢)_vp- (J - dV
o 2 pc 2 c2 ]

(._s)
The highest spatial derivative index for both primary variables ¢ and p is 1, except if a = 0, in

which case it is only 0 for p . The two interesting limit cases are of course a = O and a = l, for

which

n_c¢,p)= -½pCV¢)rv_-__---_+CV¢)rvpdr-
2pc2 a pJ,,dS - ,(P- _)_ dS dr.

(40)

5. FINITE ELEMENT DISCRETIZATION

5.1 Discretization of R,,

In the following we derive semidiscrete finite-element equations of motioa based on the R,, funclional

(38). The volume V is subdivided into fluid finite elements. Over each iq.id element the state is

represented by the primary variables ¢ and p, which are defined as functions of position in the usual

shape-function interpolation procedure. The finite element interpolation in V may be expressed as

¢(x,t)= N_(x)_(t), p(x,t)= N,,(x)p(t), (tl)

where _ and p are computational column vectors that contain nodal val.es of ¢ and p, respectively,

and N,/, and N v are corresponding row-vector arrays of dimensionless shape functions. The specified

displacement over Sd is interpolated by

d.(x, t) = nrd(x, t}= nrNa(x)_], = N,l,,(x)('l,r (,12}

where n is the external-normal unit vector on S,z, Na contains the displacement shape functiot_s of

the enclosing container, Na,, are these shape functions projected on the oul:ward normal n on S,l,

1' If a # 1, 6R._ = 0 is a restricted variational principle because the sul,stit,tion Va_ = c-2_ hohls oILly
at theexactsolution.

9



and d contains nodal displacement values. For now the container displacements will be assumed to

be prescribed, hence the superposed tilde.

In the following three Sections (5-8) we shall assume that the prescribed-pressure boundary con-

ditions are exactly satisfied by the finite element interpolation, i.e. p =- _ on S_,. If so the S I,

integrP:l of Ra Simplifies to

Is (l - a)_ dS, (,13)
P

which vanishes for a -- 1. Inserting (41)-(42) into the functional (38) with the simpllfied S s, integral

(43) yields the semldiscrete q_adratic form

Ra(W,p) - --Ip_TH@-- 2_pTGp-t-w_TFP+(1--a) [_TVp-- _TDp-_ _Tf#,] _pr,_r_, (,14)

where

= c NcNpdV, V = (V,_N_,)rN, dS, = NpNa,, dS, f¢ = I_V,,N¢ dS.

The integration with respect to time is dropped as it has no effect on the variation process described

below.

5._ Continuity Requirement.._

The interelement continuity requirements of the shape functions of ¢ and p depend on the index of

the highest spatial derivatives that appears in R_. If a _ O, this index is 1 for both ¢ and p and

_:onsequently C o continuity is required, It is then natural to take the same shape functions for both

variables:

N_ = Np (,IG}

with both vectors _ and p of equal dimension and evaluated at the same nodes. Then some of the

matrices in (45) coalesce as

H = F, G = D = D r . (47)

The case a -- 0 is exceptional in that no spatial derivatives of p appear. One can then chosc C'-Z

(discontinuous) pressure shape functions; for example, constant over each fluid elemellt. If this is

done, obviously

N,b # N,, (.1_)

because _b must be C o continuous. Furthermore the dimensions of p aml • will not be generally

the same.

10



5.3 Singularity of H

For later use, we note that matrix H (as well as F if different from H) before the appllcation of any

essential boundary conditions at fluid nodes, is singular because

° He - 0 (49)

where e denotes the vector of all ones. This follows from (45) and expresses the fact that a constant

potential generates no pressures or displacements.

6. TRANSIENT RESPONSE EQUATIONS

6.1 The Rigid-Container Equations of Motion

Since Ra contains time derivatives of of order up to 2 in _, the appropriate Euler-Lagrange varia-

tional equation is

(OR,_ O ,gR,_ 02 OR_)6_ + 0,6R_= __-_ - b_T_ + at _ o_, -_b--o°p -- (50)

which applied to (44) yields

[pH_ + aFp - (1 - a)Dl5 + (1 - a)Vp -I- (1 - a)f,/,] _@ = 0,

[- p-lGp + aFt@ -(1- a)Dr_ + (1 - a)Vr@ - 'rrt] 1 6p = 0.

These equations can be presented in partitioned matrix form as

(51)

[_(lPH -(1- ) = (-(1-a)f¢o,o,_ o o _,-,ol/°p _r a }, (s_)

where J = (1 - a)V + aF.

6.Z The Flezible-Container Equations of Motion

If the fluid is enclosed in a flexible container, the boundary displacements d are no longer prescribed

on Sj but must be incorporated in the problem by including them on the left hand side of the

equations of motion. In the sequel, vector d collects all structural node displacements, of which d is

a subset on Sj. Matrix 'r, suitably expanded with zeros to make it conform to d, becomes T. We

shall only consider here the case in which the container is modelled as a linear unda,npcd structure

for which the standard mass/stiffness semidiscrete equation of motion is

Md + Kd = f, + Tp, (s:_)

where M is the mass matrix, K the tangent stiffness matrix at the reference state, TI, is the

pressure force on the structure, and f,t is the externally applied force on the structure. Note that If

11



in general must account [or container prestress effects through the geometric stiffness. Combining

(52) and (53) we get the coupled system

[ :]1}[ }M 0 a K 0 --3T W -(1 a)f v, .0 pH -(1 a)D _ + 0 = -

0 --(1 -- a)O T l_) -T r -p-'C p O

Ira =0,

D T 13 -T T V T -p-tG p 0

(55)

There is littlethan can be (lone beyond thispoint,as the shape functionsfor p and _bwillbe

generallydifferent.Although the pressuremay be constant over each dement, no condensation of

p is possible in the dynamic case.

Ira=l,

,oH _ + 0 0 F _ = 0 .

0 13 _T T FT _p-l(; p 0

Note that allthesesystems, (54) through (56),are symmetric.

(56)

6.S Identical Shape Functions

Further progress in the case a = 1 can be made if we assume, as discussed in §5.2, that the shnpe

functions for p and ¢ coincide. Taking then (47) into account, (5,1) simplifies to

o pH ff + o o H _ = o .
0 0 15 -T r H -p-IG p 0

(57)

The second matrix equation gives pH_ + Hp = 0. Since H is nonnegativc deft,rite we must have

p= (ss)

This is the discrete analog of the continuous relation (20) for the dynamic ovcrpressHre. For future

use let us note that if the container is rigid, (57) reduces to

-p-_Gp + H_ = G_ + H_ = TT d. (59)

6.4 Unsymmetric Elimination

If (58) is used to eliminate the pressure vector from (57) we obtain

K 0 d,,]{,}--{',o,}. (60)

12



Conversely,eliminating the displacement potential vector gives

Unlike previous systems, both (60) and (61) are unspmmetric. Thus the straightforward elimination

of a field variable, be it p or ¢, causes symmetry to be lost. These forms wlJl be called misymmetric

two-field forms, or U2 for short. System (60) reduces to (59) if the container is rigid.

7. REFORMULATIONS OF THE TRANSIENT RESPONSE EQUATIONS

7".I S$ Forms

Starting from (57) and (58) it is possible to derive three more symmctrlc forms that are formally

equivalent. One is obtained by differentiating the last matrix equation twice in time, transforming

the first equation via (57), and finally including (57) premultiplied by p-l G as third matrix equatiou:

° {,}p T -pH _ + 0 0 i_, = 0

G 15 0 p-lG p 0
(62)

Another one is obtained by integrating the first matrix equation of (57) twice in time, using (58) to

eliminate the pressure, and including Kd - Kd = 0 as trivial equation:

[000]{0/o c o _,

0 0 K d

-M

+ -pT r
-K

6_

(6:_)

where superposed stars denote integration with respect to t. Finally, differentiating the first matrix

equation of (63) twice in time, moving pTrd to the left, and including Md - hid -- 0 as trivial

equation, we get

i0 0 [ 001{ I {}0 pC; -pT T _ + pI-I 0 _ = 0
-M -pT -K d 0 0 d -f,_

(61)

The four symmetric forms, (57), (62), (63) and (64), will be called sy,,,,ndric three field forms,

or $3 forms for short. It should be noted that there is no symmetric $3 form with a state ve¢:tor

consisting of d, p and d.

7.P, $9 Forms

Each of the $3 forms has a statically condensable matrix equation that allows one field to l,e

eliminated. For example, the last matrix equation of (57) is -Trd + II_ - p-lGp = 0 which

can be solved for the pressure vector p if G is nonsingular. AssumiJ_g that all matrix inverses

13



indicated below exist (more will be said about this later), the condensation process yields four

two-field symmetric forms:

[M 0 d [K+pTG-tT r pTG-IH d

GH-IT r p-tGH-'G {I_ p-IG] {p 0}'

K ] M-

[ MK-_M pMIK-tT a o d 1_ I£- tfd.
J

((;6)

(67)

(68)

These will be called symmetric two-field forms, or $2 forms for brevity. The condensation process

reduces the number of degrees of freedom but is detrimental to matrix sparsity. The last property

may be recovered to some extent by taking advantage of factored forms of the matrices affected by

the inverses; for example

[K + pTG-=T T pTG-_H ] I ;,]. (69}

Expressions for the matrices in (66)-(68)are given in [3].

7.8 Advantages and Restrictions

The eight symmetric forms ($3 and $2), plus the two unsynunetric forms (U2), represent ten

formulations of the Rt-b_ed fluid-structure interaction problem for the identical-shape-functi(m

case. Although formally equivalent, they may have different behavior in terms of numerical stability

and computational efficiency. The following items may affect the choice among the various forms.

Matrix sparseness retention. Matrices (g and M are often diagonal. The S2 forms that involve C=- t

and K-l, whether in direct or factored form, are (other things being equal) preferable to the others.

Existence of inversefl. If the fluid does not have a free surface, II is singular on account of (.i.q), and
consequently (tl5)'_oes not exist. If the container has some unsuppressed rigid body modes, K is

singular and consequently {(i_) does not exist.

Applied force processing. Forms (63) and (67) require that the applied structural forccs, f,b be inte-

grated twice in time bebre being used. Both $2 forms (67) and (68) require additional matrix-vector

operations on the force vectors. These disadvantages, however, disappear in the free-vibrations case

discussed in §8.

Ezplicit versus implicit time integration. If M and G are diagonal, both unsymmetric forms (60)

and (61) are attractive for explicit time integration because the leftmost coefficient matrices are

14



Table 2 Limit Condltions

Limit condition Matrix Recommended

expression ]orm(s}

Incompressible fluid (c --* c¢)

Cavitating fluid (¢ _ 0)

Stiff container

Hyperlightcontainer

o --.0 (60),(61),(62),(66)
o --co (67),(86)
x --.oo (04),(66)
M -_ o (64),(6s)

upper and lower triangular, respectively. Therefore equations may be solved directly in a forward

or backward direction without prior factorization. No symmetric form exhibits a similar property.

Physical limit conditions. Those collected in Table 2 are of interest in the applications. Recom-

mended forms, if applicable {restrictions are analyzed in §7.3), are preferable because of numerical
stability or suitability for perturbation analysis. Of all conditions listed in Table 2 the incompress-

ible fluid case is of central importance. There must be a free surface S t, else tile contained fluid

would behave as a rigid body. Consequently H is nonsingular. Setting G = 0 in (66) we obtain the

so-called added mass equations

M,,d + Kd = f,z, (70)

where M,, is the added mass of the coupled system:

My = M + pTH-_T r. (7t)

Preservation of structural rigid body motions. This is discussed in more d_tail in §8.5 in conjunction

with the free-vibration eigenproblem. Suffices to say that forms (63)-(64) and (67)-(68) do not gen-

erally preserve such motions and are inappropiate for treating unsupported structures (for example,

liquid tanks in orbit).

Presence of constant potential mode (CPM). This is covered in detail in §8.6. If the fluid is totally

enclosed by the container so that there is no free surface, forms {57) and (65) should not be used.

8. FREE VIBRATIONS

To obtain the elastoacoustic free-vibrations problem, we make tile standard substitutions

d=ue i't, ilt=qe i't, P=re I't, f,t=O, (72)

where j = _ and w is the circular frequency, into the transient response equations. Thus we

obtain ten algebraic eigenproblems, eight symmetric and two unsymmetric, which are displayed

below. General properties of these eigensystems are summarized in tile Appendix. In tile following

eigenproblem statements, subscript m is a mode index. The followlng eigenvector relations should

be noted:

2 '* _=2u,,, (_,,, / o}. (73)rm = -Pwmq,n, u,,t=

15



For the unsymmetric forms g_en in §8.3 one must distinguish between left and right eigenvectors.

Supercript R is applied to right eigenvectors wherever necessary; otherwise left eigenvectors arc

assumed.

8.1 S_ Forms

2
t_vrt p]H q,. =

0 rm
Ko0 0 II q,. ,

-T T H -p-_G r,_
{74)

o]{.} °]{}wm pT r -pH G q,,, = 0 0 q,,, ,
0 G 0 r., 0 P- jG r,,,

(75)

[: ]{q:)[:r ?]{"}0 0 0 u,. -M -pT
2 G 0 ptI q,,_ ,Wrn

0 K 0 _; ,,.,

(7o)

2 0 pG -pT T ptI
(4_ F11_ -_- 2)11t •

-M -pT -K 0 u.,

(77}

8.°.'2 $2 Forms

w._ pH q,,, = pHG-l T r ptIG- ill q,. '
(78}

2 [M+pTH-_T r TII-IG ]{u,,,} [If: 0 ] {u,,,}w,_ GH__T v p-XGH-1G r,. = 0 p-lG r,,, ' (7,0}

(so)

w,_ LPTrK_IM pG + p2TrK-IT q,,, = pll q,,, "
(sl)

8.$ US Forms

._[__]{,,,.}[_ o]{,,,,,}0 q,,, = -T r H q,,, '
(s2)

•[_ o]{o} [_o_]{",,,}t_m* pT T G r., = r,,, " (83)
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8.4 Computational Considerations

The conslderationsof §7.3 apply for the most part to these ten eigensystems. However, matrix

symmetry ismore important in freevibrationsthan in the transientresponse problem. This is

because eigensolutionextractionmethods that takeadvantage ofsparsityare more highlydeveloped

forthe symmetric elgenproblem than foritsunsymmetric counterpart.For an up-to-dateexposition

of those methods see Parlett[17}.

The presence of zero eigenfrequencies{co,,,= 0 roots)may cause seriousnumerical di|lqculties

in some eigensystem formulations. Two sources of such roots may be distinguished: rigid body

structural modes, and the constant-potential mode.

8.5 Rigid-Body Structural Modes

If the container is not fully supported, Ku, = 0 for structural rigid body eigenmodes ur. If II

is nonsingular eigensystems (74)-(75), their condensed versions (78)-(79), as well as the two U2

eigensystems, preserve such modes. To verify this assertion, substitute

u,_,= ur, q,,,= -H-tTrur, r,,= 0, (84)

intothe Rayleigh quotients(A.12)or (A.15)of the eigensystems.IfII issingular,form (79),which

containsH-l, does not exist,whereas (74)preservesthe modes ifthereexistqr modes such that

Hq, + Tu_ = 0. Eigensystems (76)-(77)and (80) do not generallypreserverigid-body modes,

whereas (81),which containsK -I, does not exist.

8.6 Constant Potential Mode and Spectrum Contamination

Suppose the container is supported so tf is nonsingulax but tile enclosed fluid has no pressure-

specified surface Sv. If so H is singular because of (49}. Both U2 elgensystems then possess an

co = 0 root which conventionally will be assigned modal index 0. This root is associated with the

following left/right eigenvectors

Eigensystem (82): Uo = 0, q0 = e, Uon = K-tTe, 'lg = e, (85)

Eigensystem (83): Uo = K-ITe, r0 = e, u0n = 0, rg = e, (813}

This statement is readily verified by taking the Rayleigh quotients CA.12). The eigenpairs {85-8C3) are

collectively called constant potential mode or CPM. The existence and computational implications

of this mode have been discussed by Geradin et. al. [7]. The mathematical interpretation of (8.5) is

"dual" to that of a structural rigid-body mode. Under a rigid-body motion the displacements are

nonzero but the strains vanish. Under the CPM the potential is nonzero but all fluid displacements

and dynamic pressures vanish. But unlike rlgid-body modes, the CPM has no physical significa,_ec:

it is spurious.

According to the eigenfunction theory summarized in the Appcndix, all non-CPM modes (u,,,,

q,,,, r,_) of (82) and (83) for m _ 0, w,,, _- 0 satisfy the bi-orthogonality conditions

(0 er)[oT rM GO]{u"'}=er(pTru"'l-Gr'''}=O'r,,, (87}
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[0 =0,88,
As regards the symmetric forms, eigensystems {74) and (78) are adversely affected by the singularity

of H and should not be used. This is because substituting the CPM left eigenvector (85) into either

one, with r,,, - 0 for (74), produces a Raylelgh quotient for w of the form 0/0. This means that

both coefficient matrices have a common null space (the CPM) and every w is an eigenvalue. Such

an eigenproblem is called de.feetive (see Appendix). If one attempts to numerically solve "untreated"

defective eigenproblems, nonsensical results can be expected because the whole spectrum is like]y

to be contaminated.

9. SLOSH MOTIONS IN A GRAVITY FIELD

A liquid with a free surhce in equilibrium in a time-independent acceleration fielct may exhibit sur-

lace waves, informally called "slosh" motions. From an applications standpoint the most important

acceleration fields are gravity and rotational motion, the latter being of interest in rotating tanks.

In this section we shall be content with formulating'slosh effects in a uniform gravity field. More

general fields, including time-dependent body forces, may be variatlonally treated by the method

of canonical decomposition of the non-homogeneous wave equation, but that general method wi[I

not be followed here as it is not necessary for the gravity case.

The fluid volume V is in equilibrium in the reference state discussed in §3.1 under the time-

invariant body force per unit of volume b -- Vfl, where _? is a potential field. As noted above we

restrict developments here to a gravity field of strength g uniform in space and time. The boundary

Sp is then the equilibrium free surface normal to the gravity field. The axes (xt, x_., z3} are selected

so that g acts along the -xa --- -z axis. ttence _ = -pgz + B, where B is an arbitrary constant. If

we chose B so that ]? vanishes at the free surface z = z0, then

= (89)

In the so-called hydrostatic _pproximation for small-amplitude gravity waves [91 sloshing is co,mid-

ered equivalent to a free surface pressure

p = _ + pgd,, = _ + Pg_7, where r/= d. 0¢= a-fi on S,,. (90)

Here/_ as before denotes the prescribed part of the pressure (for example, atmospheric pressure) and

rI is called the elevation of the liquid with respect to the equilibrium free surface. This approximation

assumes that the displacements are infinltesimal and that the z-acceleration of the slosh motion is

negligible.

9.1 Variational Principle

For the variational derivation of "slosh equations _ it is advantageous to chose the elevation 0 as an

independently varied field. This choice simplifies the reduction to surface unknowns as well as the

treatment of more complex interface conditions such as capillary effects.
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To incorporateslosheffectsintothe mixed variationalprinciplesbased ollthe functionalsshldied

in §4,itisconvenientto followa Galerkln techniqueby adding weighted forms of (88)to theirnrst

variation. The following combinations may be considered:

:l:(p-l_-pg_,6_n¢ ) -i'(_'_n_-r/,6_ ) ,
8r SF

Sp S$

(91)

Of these the first expression, with signs - and +, offers two advantages: (1} it is derivable from

a functional, and (2) it combines naturally with the Sj, integral in the first variation (35}. Of tile

"base" parametrlzed functional R¢, the most computationally advantageous choice is again a - 1.

The expanded functional (40), denoted as Rl,i in the sequel, is

R,. (p,¢, v) = n,v - VgndS + -- --pov) -,

where Rlv is the volume integral of (40). Note that setting r/= 0 restores Rl.

g._ Finite Element Discretization

In addition to the assumptions (41), (42) and (46) we interpolate r/as

17= N,,tl on S v, (93)

where column vector _/contains n,7 fluid elevations at nodes on Si,, and row vector N. conta]Ds the

corresponding elevation shape functions. The semidiscrete quadratic form ['or (92), again exchzd[ng

the time integral, is

Ri. (_, p, _) = -½._r H_ - _p_ Cp + pT (n -Q,,+) • - 9TT T a + pg_ (Q,,+ • - ½sv) - _r f,,,

(9,1)

where

Q,+ = ]N,7 = = N,I N, I ,Is : S r, f¢, = V1N e p.
p • lW p

(95)
The + subscripts in Q,s+ and Qv+ convey that the nonzero, "surface" portion of these matrices is
augmented with zeros to conform to vectors _ and p. To display this structure, _J, p and related

matrices are partitioned as

{!io} {P°), Q,I+=[Q,, O, Q"+'-[Qo" o] ii=rlloo II,,,] (96}l= _, , P= p,, ' 0 ' LlIo, II,,,, '
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where _, contains potentials at nn#, nodes of elements connected to S I, and po contains n,j pressures

on S_,. The dimensions of Q,_ and QI, are n n × n,t¢. In general n n < n,a¢ (in hct, about one half).

Also typically n,_ << n#, = _p as the latter pertain to a volume mesh. If r/ is interpolated by thc

•same surface functions as p, i.e. N n _ N z, on Sp, then

Q_=Qp=Q, Q.+=[Q 0], Q"+= 0 "

9.8 The Rigid Container

The following equations of motion for the rigid but mobile container are obtained on rendering (94)

stationary:

0 _ + H-Qp+ -p0'G 0S p = _" _ . (98)
0 p@_ Q,l+ - #g_!

Assuming G and S to be nonsingular and identical p and q shape functions so that (97) hols, the

nodal pressures and elevations may be statically condensed from (98) thus producing the single

matrix equation

pI-I_ + (P + R+)_ = f¢ + p(tt - Q_+)G-ITrd, (99)

where

{10o}
The rank of R+ and tt is the same as that of S, that is, n.. For most real liquids, acoustic and

slosh motions take place in very different time scales. This is the basis for the common assumption

in slosh analysis that the fluid is incompressible, i.e. c ---*oo, G _ 0 and R _ oo. If G _ 0 the

response of the above system tends is forced to occur in the displacement-potential subspace defined

by the second matrix equation of (98):

(H - Q,,+}@ = Td. (I01)

For simplicity let us assume that the container is not only rigid but motionless, that is, d = (}. The

incompressible-fluld equations become

_' } (1o2), (0:)+ o](o.ol{*',,
subject to the constraint (1-I - Qp+)_ = 0. Subvector @_ may be statically condensed from these

two relations, which may be combined as the system

['o o. o o.(,o}
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pH 0
0 0 b +
0 0 PgO

where A¢ are Lagrangian multipliers (in fact, the pressures at nodes of _,), and

-.. = - H._H_ H,,., Qo = •

If d _ 0 the force term in (103) must be appropriately modified.

9.4 The Flexible Container

For a flexible container the equations of motion accounting for fluid compressibility are

K 0 -T 0r
o o H-% r q

--TT t"][- Qv+ -P- IG ,10+

0 Q.+ 0 -S

(104)

/d}{"}= f* . (10_)
p 0

pgr1 0

Eliminating r/and p by static condensation yields

[M 0 d -Y d f,,

Lo
where

006}

Ko = K + pTG-IT r, Y = pTG-I(II - q_,+). (107}

System (106) is the counterpart of (65). If the fluid is treated as incompressible, a subspace rech_ction

procedure similar to that used in §9.3 can be invoked.

9.5 Slosh Vibrations

Algebraic eigenproblems to investigate slosh vibrations may be constructed following essentially

the same techniques as in §8, and reduced to S_, node elevations and pressures. We illustrate

the reduction technique for the incompressible fluid held in a motionless rigid container. The

eigenproblem associated with (103), suppressing the modal index m for simplicity, may be written

as

It Ho -- QT
r#, = re } (I08)

where qo and re are the modal amplitudes of @, and A,p,respectively.The lastmatrix equation

in (98) provides Q@o = Srl,or Qq, = Sz, where z isthe vectorof modal amplitudes of q, i.e.

q = zei_t.Using theserelationswe can transform the eigenproblem (I08) to

in which

C = Qtt_" Qr (lm)

and rm are Lagrange-multiplier modal amplitudes at nodes of q. This generalized symmetric eigen-

system of order 2n n provides n,_ solutions to the slosh eigenproblem. A similar technique may be

followed for the flexible container case. This finite element reductlon-to-surface technique provides

an alternative to boundary integral methods [1,8].
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10. CONCLUDING ItEMA]tKS

Displacement-potential formulations are of practical interest in fluid-structure transient-response

and vibration analysis as they provide the basis for effective numerical computations. For some

recent.applications see [2,6,7,9,12,14] and references therein. Tile preceding treatment unifies a

number of previous continutm_-based and algebraic statements [3,4,5,9,11,12,14-16] of the coupled

problem. It may be further extended in the following directions:

(1) The inhomogeneous wave equation e2V2_b - _ = f, f # 0, when the body force field b(x,t)

is time-dependent and VXb # 0. Addltional forcing terms appear in the equations of motion.

These are of interest for s|osh of fluids in rotating containers.

(2) Retaining the specific momentum m as independent field in functional (33).

(3) Inclusion of additional physical effects: capillarity, cavitation and viscosity.
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Appendix A: TIIE GENERALIZED ALGE]]RAIC EI(IENI)II.OIII, EM

Some facts about the algebraic elgenproblem are collectedhere for convenient reference.These facts are

relevant to the study of the free vibrationsof the coupled fluld-structuresystem.

A.I The Standard Unsymmetri¢ Eigenproblem

The standard eigenproblem for a real unspmmetric square matrix A may be stated

Ax_ = ,_:x;, {^.{)

where At the eigenvalues{which may be complex}, and x_ the corresponding righteigenvectorsnormalized

to unit length.The eigenproblem for the transposed matrix Is

Aryi = A_y_. (A.2)

This problem has the same elgemvaluesbut ingeneralthe eqgenvectorsYi willbe different.The y_ are called

lefteigenvectorsof A because they satisfythe problem yTA - A_yi; this in turn explains the qualifier

_right'applied to x_. The system of leftand righteigenvectorsof A satisfies_i-orthogonalityrelations:

yTx; = { o ir i # j, (A.3)p; if i = j.

This/a_ is called the condition wamber of A_ with respect to the eigenproblem (A.I); it is always less or equal

than 1 inabsolute value, and may be sero in pathologicalcases.{The closerto I,the betterconditioned Ai

is.)

Premultiplying (A.1) by y_ and assuming that/a# _ 0 yields

;_, = _,TA,,,lu, = ,,T A %,,h,,. (A.43

which isthe Rayleigh quotient for unsymmetric matrices. If pi ----0 and y_'Ax = 0, (A.5) takes the

undetermlned form 0/0 so every A_ isan elgenvalue. In such a case the elgenprob[em (A.l) issaid to be

delective.

A._ The Standard Symmetric Problem

If A is symmetric then xl = Yi, _i = 1 and (A.3) reduce to the usual orthogonallty conditions

,,r,,;={o ;,ifi=y.

whereas (A.4) becomes the usual Rayleigh quotient for a unit lengl]t vector:

_, = xTAx_. (A.6)
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A.$ The GeneralizedUnsl/mmetric Eigenproblem

The generalizedUnsymmetrlc eigenproblem is

Ax; = ,X_Dx:, (^.7)

where A and B are unsymmetric realm_trlces. Assuming that ]3-l exists,th|sproblem can be reduced to

the standard problem

Cxl = Aix,, (A.8)

in which C = B-IA. The transposed problem is

Crsi - ArB-rsl = A_sl. (^.9)

Defining BTy_ = s_, (A.9) can be transformed to

Aryl = A_]3ryl. (A,10)

The bi-orthogonalityconditions (A.3) become

•Yx;= yTBx, = xTn'y; = { 0 if _# j,/_ if{ = j.
(A.11)

The Raylelgh quotient (A.4) generalizesto

yT^x, _,TAx, (^,12}

As in §A.1, if (A.121 takes on the form 0/0 for some {, every A_ is an eigenvaluc ,_nd the elgenproblcm (A.71

is said to be dej'ective; mathematically, A and ]3 sh:xre a common null space. A defective eigenproblem

cannot be solved numerically by conventional root-extr_ct]onmethods because the 0/0 roots contaminate

the entirespectrum.

A._ The Genera[izecl S;/mme_ric EigenproMent

If both A and ]3 are symmetric,

xl = y_, s_ -- ]3-t¥_. (A.13)

and we recover the usual orthonormallty condltions

_]3_j= {0 Jri#j, (^.14)/_ if i = ].

In mechanical vibration problems forwhich D isthe mass matrix, I_ isc,'d|cdthe #c_cralizcdmoss. FilJRlly,

(A.12) reduces to the usu._lR_yleigh quotient

xTAx, (^.ls}
A, = xynx,"
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